EE/CprE/SE 491 - sddec23-10

Developing a Deep Learning Model to Automatically Detect Microscale Objects in Images and Videos

Week 6-8 Report

10/25/2023 – 11/8/2023 Client: Professor. Santosh Pandey Group number: 10

Team Members:

Katherine Moretina Ethan Baranowski Chris Cannon Matthew Kim

Hardware and GUI

- Flashed new operating system that is compatible with hardware and getting Colab to the Raspberry Pi
- Looked into methods of creating extendable arms to get closer to soybean roots
- Went to hardware store to find materials for tray table and extendable arms
- Found a Raspberry Pi case to edit in SolidWorks

Colab to Raspberry pi

- Pytorch works on the 64bit and Bullseye version. Therefore, Legacy version was needed, and it was downloaded by Raspbin. Also aarch was setted for Raspberry OS.
- Pytorch, Torchvision was downloaded order to fulfill prerequisites of Detectron 2.
- Detectron 2 was successfully downloaded.

Training Faster-RCNN Model

- Fixed all errors with importing data to Google Colab
- Researched and implemented correct configuration values for a practical dataset
 1000-10000 iterations (refers to how well the model is fitted to the dataset)
- Achieved a baseline trained model of 300 and 1000 iterations.
- Advanced baseline trained model from 1000 to 5000 iterations. Results are significantly better but do not converge yet.
- Google Colab Pro being used to overcome associated technical challenges.
- Additionally, the training sessions will be held on a lab computer to enable 24hr training sessions. The new lab computer was recently received.

Member	Tasks Completed	Hours This Week	Total Hours
Katherine Moretina	 Designed our physical image capturing setup Found resources on 3d modeling 	9	43
Matthew Kim	 Got new SD card from ETG Installed Raspberry pi 64bit Bullseye version into SD card Installed Pythorch 2.0.0 Installed Torchvision 16 Installed Detectron 2 Installed OpenCV 	12	37

Individual Contributions

Chris Cannon	 Researched and implemented checkpoint loading. Wrote a local proof-of-concept program to run the trained model Began researching anchor box sizes to improve training results 	10	38
Ethan Baranowski	 Learned iterative way of training from checkpoints. Now will train the algorithm from every 5000 iteration checkpoints until convergence. Looked at optimization of training to ensure it is being done correctly. 	15	56

Plans for Coming Week

- Download SolidWorks or start 3d modeling on SolidWorks on Iowa State Computers
- Download code onto Raspberry Pi to explore more capabilities
- Finish script to transform LabelMe data into the correct format for Detectron
- Import Detectron 2 to the Raspberry Pi
- Gain access to Google Colab Pro and optimize the training of the model.
- Integrate the baseline model into the Raspberry Pi.
- Implement training on new local Imachine to enhance training accessibility.
- Iteratively train the algorithm with checkpoints every 5000 iterations. Comparative analysis may be returned to later.